AtPDS overexpression in tomato: exposing unique patterns of carotenoid self‐regulation and an alternative strategy for the enhancement of fruit carotenoid content

نویسندگان

  • Ryan P McQuinn
  • Breanna Wong
  • James J Giovannoni
چکیده

The regulation of plant carotenogenesis is an active research area for both biological discovery and practical implementation. In tomato (Solanum lycopersicum), we demonstrate additional bottlenecks exist in the poly-cis-transformation of phytoene to lycopene in the context of ripening-induced PSY1 expression and activity and reveal phytoene desaturase (PDS), as a target for manipulation towards elevated lycopene content in maturing tomato fruit. Overexpression of Arabidopsis PDS, AtPDS, elevated PDS transcript abundance in all aerial tissues resulting in both altered carotenoid accumulation and associated pathway gene expression in a tissue-specific manner. Significant increases in downstream carotenoids (all-trans-lycopene and β-carotene) and minimal changes in carotenogenic gene expression (carotenoid isomerase-like 1, CRTIL1) suggest overexpression of heterologous AtPDS in tomato circumvents endogenous regulatory mechanism observed with previous strategies. In transgenic leaves, depletion of the PDS substrate, phytoene, was accompanied by minor, but significant increases in xanthophyll production. Alterations in the leaf carotenogenic transcript profile, including the upstream MEP pathway, were observed revealing unique feedback and feedforward regulatory mechanisms in response to AtPDS overexpression. AtPDS overexpression in the background of the tangerine (carotenoid isomerase, CRTISO) mutant exposes its potential in elevating downstream cis-lycopene accumulation in ripe tomato fruit, as cis-lycopene is more bioavailable yet less abundant than all-trans-lycopene in the wild-type control. In summary, we demonstrate the limitation of PDS in ripening fruit, its utility in modifying carotenoid profiles towards improved quality, and reveal novel carotenoid pathway feedback regulation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancement of carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitamin A conversion.

Carotenoids are essential pigments of the photosynthetic apparatus and an indispensable component of the human diet. In addition to being potent antioxidants, they also provide the vitamin A precursor beta-carotene. In tomato (Solanum lycopersicum) fruits, carotenoids accumulate in specialized plastids, the chromoplasts. How the carotenoid biosynthetic pathway is regulated and what limits total...

متن کامل

Manipulation of phytoene levels in tomato fruit: effects on isoprenoids, plastids, and intermediary metabolism.

In tomato (Solanum lycopersicum), phytoene synthase-1 (PSY-1) is the key biosynthetic enzyme responsible for the synthesis of fruit carotenoids. To further our understanding of carotenoid formation in tomato fruit, we characterized the effect of constitutive expression of an additional tomato Psy-1 gene product. A quantitative data set defining levels of carotenoid/isoprenoid gene expression, e...

متن کامل

Improved fruit α‐tocopherol, carotenoid, squalene and phytosterol contents through manipulation of Brassica juncea 3‐HYDROXY‐3‐METHYLGLUTARYL‐COA SYNTHASE1 in transgenic tomato

3-Hydroxy-3-methylglutaryl-coenzyme A synthase (HMGS) in the mevalonate (MVA) pathway generates isoprenoids including phytosterols. Dietary phytosterols are important because they can lower blood cholesterol levels. Previously, the overexpression of Brassica juncea wild-type (wt) and mutant (S359A) BjHMGS1 in Arabidopsis up-regulated several genes in sterol biosynthesis and increased sterol con...

متن کامل

Transcriptome Profiling of Tomato Fruit Development Reveals Transcription Factors Associated with Ascorbic Acid, Carotenoid and Flavonoid Biosynthesis

Tomato (Solanum lycopersicum) serves as a research model for fruit development; however, while it is an important dietary source of antioxidant nutrients, the transcriptional regulation of genes that determine nutrient levels remains poorly understood. Here, the transcriptomes of fruit at seven developmental stages (7, 14, 21, 28, 35, 42 and 49 days after flowering) from two tomato cultivars (A...

متن کامل

Optimizing sampling of tomato fruit for carotenoid content with application to assessing the impact of ripening disorders.

Color defines one aspect of quality for tomato and tomato products. Carotenoid pigments are responsible for the red and orange colors of tomato fruit, and thus color is also of dietary interest. The aims of this study were (1) to determine the relative importance of field sampling and analytical replication when measuring lycopene and beta-carotene in tomato fruit and (2) to determine the effec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2018